Дискуссионный Петрофизический Форум - Petrophysics Forum PETROPHYSICS & INTERPRETATIONS FORUM
форум по петрофизике



Ближайшие конференции (условия участия и обзор) в разделе [РАЗНОЕ]

Полезные ссылки размещены внизу

Все посетители приглашаются к участию в обсуждениях (в форме вопросов, предложений, реплик и полемических замечаний)

 
On-line: гостей 0. Всего: 0 [подробнее..]
администратор




Зарегистрирован: 24.05.05
Рейтинг: 2
ссылка на сообщение  Отправлено: 22.08.08 01:58. Заголовок: Simulation of the packing of granular mixtures of non-convex particles and voids characterization


Simulation of the packing of granular mixtures of non-convex particles and voids characterization
S. RЁ¦mond1 , J. L. Gallias1 and A. Mizrahi2
Granular Matter
Springer Berlin / Heidelberg
ISSN 1434-5021 (Print) 1434-7636 (Online)
Volume 10, Number 3 / §®§С§в§д 2008 §Ф.
DOI 10.1007/s10035-007-0082-y
pp. 157-170

Simulation of the packing of granular mixtures of non-convex particles and voids characterization
S. RЁ¦mond1 , J. L. Gallias1 and A. Mizrahi2

(1) L2MGC, EA 4114, UniversitЁ¦ de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95031 Cergy-Pontoise Cedex, France
(2) DЁ¦partment de MathЁ¦matiques, UniversitЁ¦ de Cergy-Pontoise, 2 av. Rodolphe Chauvin, Pontoise, 95302 Cergy-Pontoise Cedex, France

Received: 6 March 2007

Abstract The simulation of granular materials has considerably developed in the last decades essentially with simple geometry particles. The purpose of this paper is to study granular systems of non-convex particles which are present in many industrial processes. Two shapes of large and two shapes of small non-convex particles resulting from the cutting of a hollow cylinder are modelled, and binary mixtures containing varying proportions of small and large particles are generated with a Monte Carlo simulation. Two different states of the granular systems are studied: suspensions and packings obtained after sedimentation. No contact force model is used and only steric repulsion is taken into account. The density, the pore size distribution and the tortuosity of the granular systems are studied. The results are compared to those obtained with granular systems of convex particles.

References
1. Herrmann, H.J.: Computer simulations of granular media. In: Bideau, D., Hansen, A. (eds) Disorder and Granular Media, Elsevier, Amsterdam (1993)

2. Barker, G.C.: Computer simulations of granular materials. In: Mehta, A. (eds) Granular Matter, an Interdisciplinary Approach, Springer, New York (1993)

3. Pöschel, T., Schwager, T.: Computational Granular Dynamics, Models and Algorithms. Springer, Berlin (2005)

4. Zou, R.P., Yu, A.B.: Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol. 88, 71–79 (1996)

5. Coelho, D., Thovert, J.F., Adler, P.M.: Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55(2), 1959–1978 (1997)

6. Marache, A., Riss, J., Cholet, C., Gautier, P.E.: Ballast forming crushed rock: size, shape and shear behavior. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

7. Bowman, E.T., Soga, K.: The influence of particle shape on the stress-strain and creep response of a fine silica sand. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

8. Pournin, L., Liebling, T.M.: A generalization of distinct element method to tridimensional particles with complex shapes. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

9. Muth, B., Eberhard, P., Luding, S.: Collisions between particles of complex shape. In: Garcia-Rojo, R., Herrmann, H.J., McNamara, S. (eds) Powders and Grains, A.A. Balkema Publishers, London (2005)

10. Nolan, G.T., Kavanagh, P.E.: Random packing of nonspherical particles. Powder Technol. 84, 199–205 (1995)

11. Smith, L.N., Midha, P.S.: Computer simulation of morphology and packing behaviour of irregular particles, for predicting apparent powder densities. Comput. Mater. Sci. 7, 377–383 (1997)

12. Jia, X., Williams, R.A.: A packing algorithm for particles of arbitrary shapes. Powder Technol. 120, 175–186 (2001)

13. Clarke, A.S., Wiley, J.D.: Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35(14), 7350–7356 (1987)

14. He, D., Ekere, N.N., Cai, L.: Computer simulation of random packing of unequal particles. Phys. Rev. E 60(6), 7098–7104 (1999)

15. Yang, A., Miller, C.T., Turcoliver, L.D.: Simulation of correlated and uncorrelated packing of random size spheres. Phys. Rev. E 53(2), 1516–1524 (1996)

16. Furnas, C.C.: Grading aggregates, I—Mathematical relations for beds or broken solids of maximum density. Ind. Eng. Chem. 23(9), 1052–1058 (1931)

17. Ben Aïm, R., Le Goff, P.: Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires. Powder Technol. 1(5), 282–290 (1968)

18. Yerazunis, S., Cornell, S.W., Winter, B.: Dense random packing of binary mixtures of spheres. Nature 4999, 835–837 (1965)

19. Rémond, S., Gallias, J.L.: Gallias, modelling of granular mixtures placing. Comparison between a 3D full-digital model and a 3D semi-digital model. Powder Technol. 145, 51–61 (2004)

20. Stovall, T., De Larrard, F., Buil, M.: Linear packing density model of grain mixtures. Powder Technol. 48(1), 1–12 (1986)

21. De Larrard, F.: Concrete Mixture Proportioning: A Scientific Approach. E & FN Spon, London (1999)

22. Finney, J.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. Ser. A319(1539), 479–493 (1970)


23. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. Br. J. Appl. J. Phys. D 2, 863 (1969)

24. Berryman, J.G.: Random close packing of hard spheres and disks. Phys. Rev. A 27, 1053–1061 (1983)

25. Aste, T.: Circle, sphere and drop packings. Phys. Rev. E 53(3), 2571–2579 (1996)

26. Aste, T., Weaire, D.: The pursuit of perfect packing. Institute of Physics Publishing, London (2000)

27. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58(10), 038–1040 (1987)

28. Kudrolli, A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–247 (2004)

29. Luchnikov, V.A., Medvedev, N.N., Oger, L., Troadec, J.P.: Voronoi—Delaunay analysis of voids in systems of non spherical particles. Phys. Rev. E 59, 7205–7212 (1999)

30. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Comput. Aided Des. 37(13), 1412–1424 (2005)

31. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

32. Dullien, F.A.L.: Porous Media, Fluid Transport and Pore Structure. Academic, New York (1979)

33. Shen, L., Chen, Z: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)

34. Maxwell J.C. Treatise on Electricity and Magnetism, 2nd edn. Clarendon, Oxford

35. Akanni, K.A., Evans, J.W., Abramson, I.S.: Effective transport coefficients in heterogeneous media. Chem. Eng. Sci. 42, 1945–1954 (1987)

36. Neale, G.H., Nader, W.K.: Prediction of transport processes in porous media. Am. Inst. Chem. Eng. J. 19, 112–119 (1973)

37. Ho, F.G., Strieder, W.: A variational calculation of the effective surface diffusion coefficient and tortuosity. Chem. Eng. Sci. 36, 253–258 (1981)


38. van Brakel, J., Heertjes, P.M.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Mass Transf. 17, 1093–1103 (1974)

39. Weissberg, H.: Effective diffusion coefficients in porous media. J. Appl. Phys. 34, 2636–2639 (1963)

40. Tomadakis, M.M., Sotirchos, S.V.: Transport properties of random


C уважением и надеждой на понимание Спасибо: 0 
Профиль Цитата Ответить