Дискуссионный Петрофизический Форум - Petrophysics Forum PETROPHYSICS & INTERPRETATIONS FORUM
форум по петрофизике



Ближайшие конференции (условия участия и обзор) в разделе [РАЗНОЕ]

Полезные ссылки размещены внизу

Все посетители приглашаются к участию в обсуждениях (в форме вопросов, предложений, реплик и полемических замечаний)

 
On-line: гостей 0. Всего: 0 [подробнее..]
администратор




Зарегистрирован: 24.05.05
Рейтинг: 2
ссылка на сообщение  Отправлено: 25.08.08 02:03. Заголовок: An overview of spatial microscopic and accelerated kinetic Monte Carlo methods


An overview of spatial microscopic and accelerated kinetic Monte Carlo methods

Journal of Computer-Aided Materials Design
§Є§Щ§Х§С§д§Ц§Э§о Springer Netherlands
ISSN 0928-1045 (Print) 1573-4900 (Online)
§Ї§а§Ю§Ц§в Volume 14, Number 2 / §Є§р§Э§о 2007 §Ф.
DOI 10.1007/s10820-006-9042-9
pp. 253-308
Subject Collection §·§Ъ§Ю§Ъ§с §Ъ §Ю§С§д§Ц§в§Ъ§С§Э§а§У§Ц§Х§Ц§Я§Ъ§Ц

An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
Abhijit Chatterjee1 and Dionisios G. Vlachos1

(1) Department of Chemical Engineering and Center for Catalytic Science and Technology (CCST), University of Delaware, Newark, DE 19716, USA

Received: 6 August 2006 Accepted: 17 October 2006 Published online: 28 February 2007

Abstract The microscopic spatial kinetic Monte Carlo (KMC) method has been employed extensively in materials modeling. In this review paper, we focus on different traditional and multiscale KMC algorithms, challenges associated with their implementation, and methods developed to overcome these challenges. In the first part of the paper, we compare the implementation and computational cost of the null-event and rejection-free microscopic KMC algorithms. A firmer and more general foundation of the null-event KMC algorithm is presented. Statistical equivalence between the null-event and rejection-free KMC algorithms is also demonstrated. Implementation and efficiency of various search and update algorithms, which are at the heart of all spatial KMC simulations, are outlined and compared via numerical examples. In the second half of the paper, we review various spatial and temporal multiscale KMC methods, namely, the coarse-grained Monte Carlo (CGMC), the stochastic singular perturbation approximation, and the ¦У-leap methods, introduced recently to overcome the disparity of length and time scales and the one-at-a time execution of events. The concepts of the CGMC and the ¦У-leap methods, stochastic closures, multigrid methods, error associated with coarse-graining, a posteriori error estimates for generating spatially adaptive coarse-grained lattices, and computational speed-up upon coarse-graining are illustrated through simple examples from crystal growth, defect dynamics, adsorptionЁCdesorption, surface diffusion, and phase transitions.
Keywords Review - Multiscale simulation - Coarse-graining - Mesoscopic modeling - Monte Carlo - Materials - Defects - Diffusion - Crystal growth - Phase transitions - Accelerated algorithms - Binary tree - Efficient update - Efficient search - Tau-leap - Stiff - Stochastic - Computational singular perturbation - Low-dimensional manifold


--------------------------------------------------------------------------------


Dionisios G. Vlachos
Email: vlachos@udel.edu


References
1. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys 21: 1087ЁC1092


2. Allen M.P., Tildesley D.J. (1989). Computer Simulation of Liquids. Oxford Science Publications, Oxford

3. Frenkel D., Smit B. (1996). Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York

4. Auerbach S.M. (2000). Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores. Int. Rev. Phys. Chem. 19: 155ЁC198


5. Binder K. (1986). Monte Carlo Methods in Statistical Physics, vol. 7. Springer, Berlin Heidelberg New York

6. Binder K. (1992). Atomistic modeling of materials properties by Monte-Carlo simulation. Adv. Mater 4: 540ЁC547


7. Landau D.P., Binder K. (2000). A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge

8. Ciccotti G., Frenkel D., McDonald I.R. (1987). Simulation of Liquids and Solids. Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics. North-Holland, Amsterdam

9. Dooling D.J., Broadbelt L.J. (2001). Generic Monte Carlo tool for kinetic modeling. Ind. Eng. Chem. Res 40: 522ЁC529


10. Gilmer G.H., Huang H.C., de la Rubia T.D., Dalla Torre J., Baumann F. (2000). Lattice Monte Carlo models of thin film deposition. Thin Solid Films 365: 189ЁC200


11. Nieminen R., Jansen A. (1997). Monte Carlo simulations of surface reactions. Appl. Catal. A: Gen 160: 99ЁC123


12. Hill T.L. (1986). An Introduction to Statistical Thermodynamics. Dover, New York

13. Chakraborty A.K. (2001). Molecular Modeling and Theory in Chemical Engineering, vol. 28. Academic Press, New York

14. Broadbelt L., Snurr R. (2000). Applications of molecular modeling in heterogeneous catalysis research. Appl. Catal. A: Gen 200: 23ЁC46


15. Sholl D.S., Tully J.C. (1998). A generalized surface hopping method. J. Chem. Phys 109: 7702ЁC7710


16. Catlow C.R.A., Bell R.G., Gale J.D. (1994). Computer modeling as a technique in materials chemistry. J. Mat. Chem 4: 781ЁC792


17. Evans J.W., Miesch M.S. (1991). Catalytic reaction kinetics near a first-order poisoning transition. Surf. Sci 245: 401ЁC410


18. Hansen E.W., Neurock M. (2000). First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd. J. Catal 196: 241ЁC252


19. Huang H.C., Gilmer G.H. (1999). Multi-lattice Monte Carlo model of thin films. J. Comput. Aided Mater. Des 6: 117ЁC127


20. Jansen A.P.J. (1995). Monte Carlo simulations of chemical reactions on a surface with time-dependent reaction-rate constants. Comput. Phys. Commun 86: 1ЁC12


21. Kang H.C., Weinberg W.H. (1988). Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two-dimensional domain ordering. J. Chem. Phys 90: 2824ЁC2830

22. Kew J., Wilby M.R., Vvedensky D.D. (1993). Continuous-space Monte Carlo simulations of epitaxial-growth, Journal of Crystal Growth. J. Crystal Growth 127: 508ЁC512

23. Khor K.E., Das Sarma S. (2002). Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study. Phys. Rev. B 62: 16657ЁC16664

24. Macedonia M.D., Maginn E.J. (2000). Impact of confinement on zeolite cracking selectivity via Monte Carlo integration. AIChE J. 46: 2504ЁC2517


25. Nikolakis V., Vlachos D.G., Tsapatsis M. (1999). Modeling of zeolite L crystallization using continuum time Monte Carlo simulations. J. Chem. Phys. 111: 2143ЁC2150


26. Novere N.L., Shimizu T.S. (2001). STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17: 575ЁC576

27. Schulze T.P. (2004). A hybrid scheme for simulating epitaxial growth. J. Crystal Growth 263: 605ЁC615


28. Zhdanov V.P., Kasemo B. (1997). Kinetics of rapid reactions on nanometer catalyst particles. Phys. Rev. B, 55, 4105ЁC4108


29. Gilmer G. (1980). Computer models of crystal growth. Science 208: 355ЁC363


30. Muller-Krumbhaar H. (1978). Kinetics of crystal growth. In: Kaldis E. (eds) Current Topics in Materials Science. North-Holland, Amsterdam, pp. 1ЁC46

31. Drews T.O., Ganley J.C., Alkire R.C. (2003). Evolution of surface roughness during copper electrodeposition in the presence of additives - Comparison of experiments and Monte Carlo simulations. J. Electrochem. Soc 150: C325ЁCC334


32. Lou Y., Christofides P.D. (2004). Feedback control of surface roughness of GaAs (001) thin films using kinetic Monte Carlo models. Comput. Chem. Eng 29: 225ЁC241


33. Gallivan M.A., Murray R.M. (2004). Reduction and identification methods for Markovian control systems, with application to thin film deposition. Int. J. Robust Nonlinear Control 14: 113ЁC132

34. Wicke E., Kunmann P., Keil W., Schiefler J. (1980). Unstable and oscillatory behavior in heterogeneous catalysis. Berichte der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys 84: 315ЁC323


35. Ziff R.M., Gulari E., Barshad Y. (1986). Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56: 2553ЁC2556


36. Vlachos D.G. (2005). A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems. Adv. Chem. Eng 30: 1ЁC61

37. Cuitino A.M., Stainier L., Wang G.F., Strachan A., Cagin T., Goddard W.A., Ortiz M. (2002). A multiscale approach for modeling crystalline solids. J. Comput. Aided Mater. Des 8: 127ЁC149

38. Miller R.E., Tadmor E.B. (2002). The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des 9: 203ЁC239


39. Maroudas D. (2003). Multiscale modeling. In: Challenges for the Chemical Sciences in the 21st Century: Information and Communications Report. National Academies, Washington, DC, pp. 133ЁC136

40. Grujicic M., Lai S.G. (2001). Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings. J. Mater. Sci 36: 2937ЁC2953


41. Jaraiz M., Rubio E., Castrillo P., Pelaz L., Bailon L., Barbolla J., Gilmer G.H., Rafferty C.S. (2000). Kinetic Monte Carlo simulations: an accurate bridge between ab initio calculations and standard process experimental data. Mater. Sci. Semiconductor Process 3: 59ЁC63


42. Kremer K., Muller-Plathe F. (2002). Multiscale simulation in polymer science. Mol. Simul 28: 729ЁC750


43. Duke T.A.J., Le Novere N., Bray D. (2001). Conformational spread in a ring of proteins: A stochastic approach to allostery. J. Mol. Biol 308: 541ЁC553


44. McAdams H.H., Arkin A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci 94: 814ЁC819


45. McAdams H.H., Arkin A. (1999). ItЎЇs a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics 15: 65ЁC69


46. Woolf P.J., Linderman J.J. (2003). Self organization of membrane proteins via dimerization. Biophys. Chem 104: 217ЁC227


47. Mayawala K., Vlachos D.G., Edwards J.S. (2006). Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. Biophys. Chem 121: 194ЁC208


48. National Research Council (NRC): Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. National Research Council, The National Academy Press, BCST, www.nap.edu publication (2003)

49. Partnership, C.I.V.T., Chemical Industry Vision2020 Technology Partnership, Chemical Industry R&D Roadmap for Nanomaterials by design. www.ChemicalVision2020.org (2003)

50. Vlachos, D.G.: Molecular modeling for non-equilibrium chemical processes. In: Lee, S. (ed.) Encyclopedia of Chemical Processing, pp. 1717ЁC1726. Taylor and Francis, New York.

51. Voter, A.F.: Introduction to the Kinetic Monte Carlo Method. Radiation Effects in Solids. Springer, NATO Publishing unit, Dordrecht (2006) in press.

52. Gardiner C.W. (1985). Handbook of Stochastic Methods, 2nd edn. Springer, Berlin Heidelberg New York

53. Ghez R. (1988). A Primer of Diffusion Problems. John Wiley & Sons, New York

54. Vlachos D.G., Schmidt L.D., Aris R. (1993). Kinetics of faceting of crystals in growth, etching, and equilibrium. Phys. Rev. B 47: 4896ЁC4909


55. Magna A.L., Coffa S., Colomo L. (1999). Role of externded vacancy-vacancy interaction on the ripening of voids in silicon. Phys. Rev. Lett 82: 1720ЁC1723

56. Domain C., Becquart C.S., Malerba L. (2004). Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater 335: 121ЁC145


57. Sadigh B., Lenosky T.J., Theiss S.K., Caturla M.J., de la Rubia T.D., Foad M.A. (1999). Mechanism of boron diffusion in silicon: An ab initio and kinetic Monte Carlo study. Phys. Rev. Lett. 83: 4341ЁC4344


58. Noda T. (2003). Modeling of Indium diffusion and end-of-range defects in Silicon using a kinetic Monte Carlo simulation. J. Appl. Phys 94: 6396ЁC6400


59. Gordon S.M.J., Kenny S.D., Smith R. (2005). Diffusion dynamics of defects in Fe and Fe-P systems. Phys. Rev. B 72: 214104

60. Soneda N., Rubia T.D. (1998). Defect production, annealing kinetics and damage evolution in a-Fe: an atomic-scale compuer simulation. Philos. Mag. A 78: 995ЁC1019


61. Dai J., Kanter J.M., Kapur S.S., Seider W.D., Sinno T. (2005). On-lattice kinetic Monte Carlo simulations of point defect aggregation in entropically influenced crystalline systems. Phys. Rev. B 72: 134102

62. Fahey P.M., Griffin B.P., Plummer J.D. (1989). Point defects and dopant diffusion in silicon. Rev. Mod. Phys 61: 289


63. Flynn C.P. (1972). Point defects and diffusion. Calderon Press, Oxford

64. Vlachos D.G., Katsoulakis M.A. (2000). Derivation and validation of mesoscopic theories for diffusion of interacting molecules. Phys. Rev. Lett 85: 3898ЁC3901


65. Lam R., Basak T., Vlachos D.G., Katsoulakis M.A. (2001). Validation of mesoscopic theories and their application to computing effective diffusivities. J. Chem. Phys 115: 11278ЁC11288


66. Gillespie D.T. (1976). A general method for numerically simulating the stochastic evolution of coupled chemical reactions. J. Comput. Phys 22: 403ЁC434


67. Gomer R. (1990). Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys 53: 917ЁC1002


68. Kapur S.S., Prasad M., Crocker J.C., Sinno T. (2005). Role of configurational entropy in the thermodynamics of clusters of point defects in crystalline solids. Phys. Rev. B 72: 014119

69. Henkelman G., Jonsson H. (2001). Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys 115: 9657


70. Schulze T.P. (2002). Kinetic Monte Carlo simulations with minimal searching. Phys. Rev. E 65: 036704


71. Lukkien J.J., Segers J.P.L., Hilbers P.A.J., Gelten R.J., Jansen A.P.J. (1998). Efficient Monte Carlo methods for the simulation of catalytic surface reactions. Phys. Rev. E 58: 2598ЁC2610


72. Bortz A.B., Kalos M.H., Lebowitz J.L. (1975). A new algorithm for Monte Carlo simulations of Ising spin systems. J. Comput. Phys 17: 10ЁC18

73. Snyder M.A., Chatterjee A., Vlachos D.G. (2004). Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems, invited. Comput. Chem. Eng 29: 701ЁC712

74. Vlachos D.G. (1998). Stochastic modeling of chemical microreactors with detailed kinetics: induction times and ignitions of H2 in air. Chem. Eng. Sci 53: 157ЁC168


75. Resat H., Wiley H.S., Dixon D.A. (2001). Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J. Chem. Phys 105: 11026ЁC11034


76. DeVita J.P., Sander L.M., Smereka P. (2005). Multiscale kinetic Monte Carlo algorithm for simulating epitaxial growth. Phys. Rev. B 72: 205421

77. Haseltine E.L., Rawlings J.B. (2002). Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys 117: 6959ЁC6969


78. Cao Y., Gillespie D.T., Petzold L.R. (2005). The slow-scale stochastic simulation algorithm. J. Chem. Phys 122: 014116

79. Chatterjee A., Vlachos D.G. (2006). Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys 124: 064110

80. Liu W.E.D., Eijnden E.V. (2005). Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys 123: 1941071ЁC19410716

81. Samant A., Vlachos D.G. (2005). Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. J. Chem. Phys 123: 144114


82. Salis H., Kaznessis Y.N. (2005). An equation-free probabilistic steady-state approxaimtion: Multigriding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys 123: 2141061ЁC21410616

83. Katsoulakis M., Majda A.J., Vlachos D.G. (2003). Coarse-grained stochastic processes for microscopic lattice systems. Proc. Natl. Acad. Sci 100: 782ЁC787


84. Katsoulakis M.A., Vlachos D.G. (2003). Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. J. Chem. Phys 119: 9412ЁC9428


85. Katsoulakis M.A., Majda A.J., Vlachos D.G. (2003). Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. J. Comput. Phys 186: 250ЁC278

86. Chatterjee A., Vlachos D.G., Katsoulakis M.A. (2004). Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules. J. Chem. Phys 121: 11420ЁC11431


87. Chatterjee A., Katsoulakis M.A., Vlachos D.G. (2005). Spatially adaptive grand canonical Monte Carlo simulations. Phys. Rev. E 71: 026702


88. Chatterjee A., Vlachos D.G., Katsoulakis M. (2005). Numerical assessment of theoretical error estimates in coarse-grained kinetic Monte Carlo simulations: application to surface diffusion. Int. J. Multiscale Comput. Eng 3: 59ЁC70

89. Ismail A.E., Rutledge G.C., Stephanopoulos G. (2003). Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties. J. Chem. Phys 118: 4414ЁC4423


90. Ismail A.E., Stephanopoulos G., Rutledge G.C. (2003). Multiresolution analysis in statistical mechanics. II. The wavelet transform as a basis for Monte Carlo simulations on lattices. J. Chem. Phys 118: 4424ЁC4431


91. Chatterjee A., Vlachos D.G. (2006). Temporal acceleration of spatially distributed kinetic Monte Carlo simulations. J. Comput. Phys 211: 596ЁC615

92. Gillespie D.T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys 115: 1716ЁC1733


93. Rathinam M., Petzold L.R., Cao Y., Gillespie D.T. (2003). Stiffness in stochastically reacting systems: the implict tau-leaping method. J. Chem. Phys 119: 12784ЁC12794


94. Tian T., Burrage K. (2004). Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys 121: 10356ЁC10364


95. Chatterjee A., Vlachos D.G., Katsoulakis M. (2005). Binomial distribution based ¦У-leap accelerated stochastic simulation. J. Chem. Phys 122: 024112

96. Chatterjee A., Mayawala K., Edwards J.S., Vlachos D.G. (2005). Time accelerated Monte Carlo simulations using the binomial ¦У-leap method. Bioinformatics 21: 2136ЁC2137


97. Auger A., Chatelain P., Koumoutsakos P. (2006). R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys 125: 084103

98. Cao Y., Petzold L.R., Rathinam M., Gillespie D.T. (2004). The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. J. Chem. Phys 121: 12169ЁC12178


99. Thostrup P., Christoffersen E., Lorensen H.T., Jacobsen K.W., Besenbacher F., Norskov J.K. (2001). Adsorption-induced step formation. Phys. Rev. Lett 87: 126102


100. Kratzer P., Penev E., Scheffler M. (2003). Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations. Appl. Surf. Sci 216: 436ЁC446


101. Fichthorn K.A., Scheffler M. (2000). Island nucleation in thin-film epitaxy: a first-principles investigation. Phys. Rev. Lett. 84: 5371


102. Neurock M., Hansen E.W. (1998). First-principles-based molecular simulations of heterogeneous catalytic surface chemistry. Comput. Chem. Eng 22: S1045ЁCS1060


103. Haug K., Raibeck G. (2003). Kinetic Monte Carlo study of competing hydrogen pathways into connected (100), (110) and (111) Ni surfaces. J. Phys. Chem. B 107: 11433ЁC11440


104. Truhlar D.G., Garrett B.C., Klippenstein S.J. (1996). Current status of transition-state theory. J. Phys. Chem 100: 12771ЁC12800


105. Car R., Parrinello M. (1985). Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett 55: 2471ЁC2474


106. Voter A.F. (1986). Classically exact overlayer dynamics: diffusion of Rhodium clusters on Rh(100). Phys. Rev. B 34: 6819ЁC6829


107. Vvedensky D.D. (2004). Multiscale modelling of nanostructures. J. Phys. Cond. Mater 16: R1537ЁCR1576


108. Maroudas D. (2000). Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering. AIChE J 46: 878ЁC882


109. Wadley H.N.G., Zhou X., Johnson R.A., Neurock M. (2001). Mechanisms, models and methods of vapor deposition. Prog. Mater. Sci 46: 329ЁC377


110. Raimondeau S., Vlachos D.G. (2002). Recent developments on multiscale, hierarchical modeling of chemical reactors. Chem. Eng. J 90: 3ЁC23


111. Daw M.S., Foiles S.M., Baskes M.I. (1993). The embedded-atom method: a review of theory and applications. Mater. Sci. Rept. 9: 251ЁC310


112. Jacobsen K.W., Norskov J.K., Puska M.J. (1987). Interatomic interactions in the effective-medium theory. Phys. Rev. B 35: 7423ЁC7442


113. Wang Z., Li Y., Adams J.B. (2000). Kinetic lattice Monte Carlo simulation of facet growth rate. Surf. Sci 450: 51ЁC63


114. Abraham F.F., Broughton J.Q., Bernstein N., Kaxiras E. (1998). Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett 44: 783ЁC787


115. JЁ®nsson H., Mills G. (1998). Nudged elastic band methods for finding minimum energy paths of transitions. In: Berne B., Ciccotti G., Coker D.F., (eds.) Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore, pp. 385ЁC404

116. Wales D.J. (2006). Energy landscapes: calculating pathways and rates. Int. Rev. Phys. Chem 25: 237ЁC282


117. Olsen R.A., Kroes G.J., Henkelman G., Arnaldsson A., Jonsson H. (2004). Comparison of methods for finding saddle points without knowledge of final states. J. Chem. Phys 121: 9776


118. Voter A.F., Montalenti F., Germann T.C. (2002). Extending the time scales in atomistic simulation of materials. Annu. Rev. Mater. Res 32: 321ЁC346


119. Lavrentiev M., Allan N., Harding J., Harris D., Purton J. (2006). Atomistic simulations of surface diffusion and segregartion in ceramics. Comput. Mater. Sci 36: 54ЁC59


120. Trushin O., Karim A., Kara A., Rahman T.S. (2005). Self-learning kinetic Monte Carlo method: Application to Cu(111). Phys. Rev. B 72: 1154011ЁC1154019

121. Renisch S., Schuster R., Wintterlin J., Ertl G. (1999). Dynamics of adatom motion under the influence of mutual interactions: O/Ru(0001). Phys. Rev. Lett 82: 3839ЁC3842


122. Maroudas D. (2001). Modeling of radical-surface interactions in the plasma-enhanced chemical vapor deposition of silicon thin films. In: Chakraborty A.K. (eds) Molecular Modeling and Theory in Chemical Engineering. Academic Press, New York, pp. 252ЁC296

123. Raimondeau, S., Aghalayam, P., Vlachos, D.G., Katsoulakis, M.: Bridging the gap of multiple scales: From microscopic, to mesoscopic, to macroscopic models. In: Proceedings of the Foundations of Molecular Modeling and Simulation, AIChE Symposium Series No. 325, 97, pp. 155ЁC158. Keystone, Co, USA (2001)

124. Gillespie D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem 81: 2340ЁC2361


125. Gibson M.A., Bruck J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104: 1876ЁC1889


126. Gilmer G.H., Bennema P. (1972). Simulation of crystal growth with surface diffusion. J. Appl. Phys 43: 1347ЁC1360


127. Reese J.S., Raimondeau S., Vlachos D.G. (2001). Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy. J. Comput. Phys 173: 302ЁC321


128. Vlachos D.G., Schmidt L.D., Aris R. (1990). The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Oscillations and fluctuations. J. Chem. Phys 93: 8306ЁC8313


129. Vlachos D.G., Schmidt L.D., Aris R. (1991). The effect of phase transitions, surface diffusion, and defects on heterogeneous reactions: multiplicities and fluctuations. Surf. Sci 249: 248ЁC264


130. Fichthorn F.A., Weinberg W.H. (1991). Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys 95: 1090ЁC1096


131. Mayawala K., Vlachos D.G., Edwards J.S. (2005). Computational modeling reveals molecular details of epidermal growth factor binding. BMC Cell Biol 6(41): 1ЁC11

132. van der Eerden J.P., Bennema P., Cherepanova T.A. (1978). Survey of Monte Carlo simulations of crystal surfaces and crystal growth. Prog. Crystal Growth Characterization 1: 219ЁC254

133. Masel R.I. (1996). Principles of Adsorption and Reaction on Solid Surfaces. Wiley, NY

134. Schoeberl B., Eichler-Jonsson C., Gilles E.D., MЁ№ller G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized receptors. Nat. Biotechnol 20: 370ЁC375

135. Dumesic, I.A., Rud, D.F., Aparicio, L.M., Rekoske, J.E., Revino, A.A.: The Microkinetics of Heterogeneous Catalysis. American Chemical Society, Washington, DC (1993)

136. Cormen T.H., Leiserson C.E., Rivest R.L. (2001). Introduction to Algorithms. MIT Press, Cambridge, MA

137. Cao Y., Li H., Petzold L.R. (2004). Efficient formulation of the stochastic simulation algorithm. J. Chem. Phys 121: 4059ЁC4067


138. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1986). Numerical Recipes. Cambridge University Press, Cambridge

139. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group, chap. 9. New York (1992)

140. Chatterjee, A., Vlachos, D.G.: Systems tasks in nanotechnology via hierarchical multiscale: formation of nanodisks arrays in heteroepitaxy. Chem. Eng. Sci. In press (2007).

141. Chatterjee A., Snyder M.A., Vlachos D.G. (2004). Mesoscopic modeling of chemical reactivity. Chem. Eng. Sci. ISCRE 18: invited 59: 5559ЁC5567

142. Chatterjee, A., Vlachos, D.G.: Hierarchical coarse-grained models derived from Kinetic Monte Carlo models: Part II: Coarse-grained Monte Carlo method for multiple interacting species, sites and crystallographic surface types. J. Chem. Phys. In preparation (2007)

143. Daw M.S., Baskes M.I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29: 6443ЁC6453


144. Stillinger F.H., Weber T.A. (1985). Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31: 5262ЁC5271


145. Haken H.(1977). Synergetics. Springer, Berlin Heidelberg New York

146. Rao C.V., Arkin A.P. (2003). Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys 118: 4999ЁC5010


147. Hill T.L. (1987). Statistical Mechanics Principles and Selected Applications. Dover, New York

148. Stinchcombe K.H., White H. (1989). Multilayer feedforward networks are universal approximators. Neural Netw 2: 359ЁC366

149. Katsoulakis M., Trashorras J. (2006). Information loss in coarse-graining of stochastic particle dynamics. J. Stat. Phys. 122: 115ЁC135

150. Burrage K., Tian T.H., Burrage P. (2004). A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol 85: 217ЁC234

C уважением и надеждой на понимание Спасибо: 0 
Профиль Цитата Ответить


Ответ:
1 2 3 4 5 6 7 8 9
большой шрифт малый шрифт надстрочный подстрочный заголовок большой заголовок видео с youtube.com картинка из интернета картинка с компьютера ссылка файл с компьютера русская клавиатура транслитератор  цитата  кавычки моноширинный шрифт моноширинный шрифт горизонтальная линия отступ точка LI бегущая строка оффтопик свернутый текст

показывать это сообщение только модераторам
не делать ссылки активными
Имя, пароль:      зарегистрироваться    
Тему читают:
(-) сообщения внутри нет
(+) новый ответ
(!) объявление администратора
(x) закрытая тема
Все даты в формате GMT  -3 час. Хитов сегодня: 55
Права: смайлы да, картинки да, шрифты да, голосования нет
аватары да, автозамена ссылок вкл, премодерация откл, правка нет




(STYLE) .font1 {COLOR: #000000; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; FONT-SIZE: 14px} .font2 {COLOR: #000000; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; FONT-SIZE: 12px} .font3 {COLOR: #000000; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; FONT-SIZE: 14px;} .font4 {COLOR: #FFA450; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; FONT-SIZE: 14px; font-weight: 700;} .font5 {COLOR: #ffa450; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; FONT-SIZE: 14px
Мои сайты
[Хрестоматия по петрофизике и интерпретации][Петрофизика и интерпретация][Группа ПАНГЕИ] [Cайт памяти Вендельштейна] [Коммуникация и семиотика]

Некоторые профессиональные ссылки (включаю по обмену ссылками)
[Мнемоники собранные в SPWLA] [Общество каротажников - SPWLA] [ЦГЭ (на сайте много публикаций)] [ПАНГЕЯ (на сайте есть публикации)] [Геологический словарь (МГУ)] [Schlumberger] [LandMark] [GeoGraphix] [StatMin (Fugro-Jason)] [PGS Abstracts] [ФОРУМ студентов РГУНГ] [Тектоника плит, вулканизм, самоорганизация] [Адрес осчастливателя нейронными сетями (всех оптом)] [Geofyzika Torun (Poland)]

Полезности и ПОИСК
[Cловари, Переводчики, Почтовый декодер, Отправка SMS, сложный поиск] [Поиск на сайте Хрестоматии по петрофизике ] [Поиск по геолог. ресурсам (МГУ)] [Яндекс][GOOGLE] [Geodictionary (регистрация свободна)] [Поиск по большим русскоязычным библиотекам]

Форумы на которые люблю заходить
[Либеральный Клуб] [Дискуссии со знакомыми о политике] [Я СВОБОДЕН!] [Форум RESEACHER] [Хороший русскоязычный Форум в Казахстане]

Новостные и журнальные сайты на которые люблю заходить
[ГРАНИ] [CВОБОДА] [ИНОПРЕССА] [Новое Время] [ПОЛИТ.ру] [RTV International] [ИНТЕЛЛИГЕНТ] [Московские Новости] [Cтоличные новости] [Новая Газета] [Имеешь право] [Еженедельный Журнал] [Эхо Москвы] [computerra] [Tema дня] [Политический журнал] [Куратор] [ВладимирВладимирович]

Сайты политических партий, движений и организаций на которые заглядываю
[Партия Свободы] [Cвободная Россия (Хакамада)] [СПС] [ЯБЛОКО] [РАДИКАЛЫ] [Дем. союз] [ОБОРОНА] [ДА] [Либеральная миссия] [Институт прав человека] [Московский общественный научный фонд] [Мемориал] [Журнал "Индекс/Досье на цензуру" ] [Центр по проблемам коррупции] [Фонд Аденауэра] [Либеральный Сахалин] [Похмелкин] [Институт развития свободы информации]

Сетевые библиотеки
[Либертариум] [Библиотека Мошкова] [Аудиториум] [Открытая русская электронная библиотека (Орел)] [Библиотека Якова Кротова] [Vivos Voco] [Архив В.Буковского] [Портал по синергетике] [Проблемы эконофизики и эволюционной экономики ] [Форум социнтегрум] [Социальная история отечественной науки] [Элементы: Популярный сайт о фундаментальной науке] [Известия НАУКА]

Частные сайты - cофт
[КП НЕМО] [NNM] [КАДЕТ]

Частные сайты и тексты которые смотрю
[Сайт деятельных скептиков] [DoctoR] [RR-полит] [Соционавтика] [Универсумс] [РЖ Андрей Левкин ] [Синергетика - сайт Курдюмова] [Российская наука в Интернет] [Наука в ПОЛИТ.ру]

Cправочная информация общего характера
[Москва Желтые страницы путешественника] [Москва Большая телефонная книга] [Конвертация единиц измерения] [Законодательство в HTML] [Cловари на сайте РГГУ]